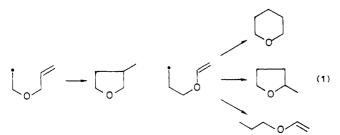
retention times, a mixture of 4, 3a, and the tentatively identified 3b, in relative ratio 1:2:1. The residue after evaporation of the dried extract (73 mg) was combined with a similar mixture (11 mg) resulting from a smaller scale NaOH treatment, dissolved in 19:1 chloroform/acetone, and subjected to chromatography on silica gel (2.5 g, Bio-Sil A, Bio-Rad Laboratories, Richmond, CA). Elution with 9:1 chloroform acetone gave first 3a (22 mg) as a pure solid and then 4 (14 mg) as the major constituent of a mixture. Characteristics of 3a: mp 143–144 °C; high resolution (HR) EIMS, calcd for $C_{14}H_{21}ClO_4 m/z$ 288.1128, found 288.1122.

Conversion of 3a to 4. To a solution of **3a** (19.9 mg, 0.07 mmol) in methanol (2 mL) was added 1 N aqueous NaOH (20.5 mL). The mixture was heated 7 h under N₂ at 97–98 °C, then cooled, and worked up as above, yielding 4 (17.4 mg, 91%), >96% pure by GC/MS. The material was further purified by recrystallization from acetone-ether. Characteristics of 4: mp 134–135 °C; HREIMS, calcd for $C_{14}H_{20}O_4$, m/z 252.1362, found 252.1362.

Acknowledgment. We thank Mr. John M. Roman for the exact mass determinations. We are also grateful to one reviewer for valuable comment on the mechanism.

Registry No. 1a, 101199-68-2; 1b, 101199-69-3; 2, 2198-92-7; 3a, 104532-66-3; 3b, 104597-40-2; 4, 104532-67-4.


Synthesis of Tetrahydrofurans from Active Methylene Compounds via Radical Cyclization

Osamu Moriya,* Yoshikiyo Urata, Yoshikazu Ikeda, Yoshio Ueno,^{†,‡} and Takeshi Endo[†]

Department of Chemistry, National Defense Academy, Hashirimizu, Yokosuka 239, Japan, and Research Laboratory of Resources Utilization, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 227, Japan

Received June 4, 1986

Radical Cyclization has been now variously applied as a useful method to the preparations of heterocyclic and carbocyclic compounds.¹ In view of efficient regioselectivity and rate of intramolecular radical addition, the reaction to give five-membered heterocyclic structures via analogues of 5-hexenyl radicals, which contain an allylic heteroatom such as oxygen or nitrogen in the chain, is often employed^{2,3} (eq 1). Our continuous investigations on

synthetic application of the radical process have been hitherto developed along this cyclization system.⁴ On the other hand, intramolecular radical addition onto a vinyl ether group has not been studied enough to utilize in organic synthesis, although this type of reaction is expected to alter some properties of radical cyclization.⁵ Very recently, two works based on such cyclization process have been reported by Kuwajima⁶ and Pattenden,⁷ in which trimethylsiloxy-substituted carbocyclic compounds and alkoxy-substituted cyclic acetals have been prepared, respectively. We report herein a new synthetic route to tetrahydrofurans from active methylene compounds via

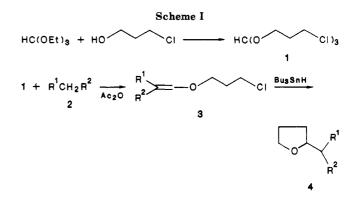


Table I. Synthesis of Vinyl Ethers 3 andTetrahydrofurans 4

			3		4 ^a	
	\mathbb{R}^1	\mathbb{R}^2	reacn time, h	yield, %	reacn time, ^b h	yield, %
a	CN	CO ₂ Et	5	59	4.5	74
b	COMe	CO ₂ Me	3	45	5	75
С	COMe	COPh	1	60 ^c	6	54
d	$\rm CO_2Et$	CO_2Et	7	43	6	81

^a Obtained from 3. ^b The reaction was followed by taking the IR spectrum (1810 cm⁻¹, Sn-H). ^cWith a trace of impurities.

radical addition onto vinyl ether moiety, which presents a straightforward example of radical cyclization when vinylic oxygen is contained in a chain.

The preparation of the tetrahydrofurans 4 was attained via three steps shown in the Scheme I. Tris(3-chloropropyl) orthoformate (1) was obtained readily from triethyl orthoformate and 1-chloropropan-3-ol by a transesterification. The vinyl ethers 3, containing two electron-withdrawing groups such as CN, COR, and CO₂R at the β -position of vinyl ether moiety, were prepared from active methylene compounds 2 and 1 by the similar procedures to those reported for the syntheses of ethyl vinyl ethers.⁸ The radical cyclization of 3, conducted with 1.1 equiv of tri-*n*-butyltin hydride (Bu₃SnH) in the presence of a catalytic amount of azobisisobutyronitrile (AIBN) in dry benzene, gave the tetrahydrofurans 4 having a mul-

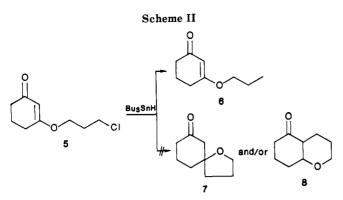
 (4) Ueno, Y.; Chino, K.; Okawara, M. Tetrahedron Lett. 1982, 2575.
 Ueno, Y.; Chino, K.; Watanabe, M.; Moriya, O.; Okawara, M. J. Am. Chem. Soc. 1982, 104, 5564. Moriya, O.; Ueno, Y.; Okawara, M.; Chem. Lett. 1984, 1437. Moriya, O.; Kakihana, M.; Urata, Y.; Sugizaki, T.; Kageyama, T.; Ueno, Y.; Endo, T. J. Chem. Soc., Chem. Commun. 1985, 1401.

(5) Preference for and endo mode of cyclization to give six-membered products was observed in the following works: Matsoyan, S. G. Russ. Chem. Rev. (Engl. Transl.) **1966**, 35, 32 and ref 6 therein. The change of regioselectivity was also appeared in the reactions of similar type of compounds bearing other heteroatom such as N, S, and SO₂: Tse, I.; Snieckus, V. J. Chem. Soc., Chem. Commun. **1976**, 505. Iida, H.; Yuasa, Y.; Kibayashi, C. J. Org. Chem. **1979**, 44, 1236. Surzur, J.-M.; Crozet, M. P. C. R. Seances Acad. Sci., Ser. C **1969**, 268, 2109. Köhler, J. J.; Speckamp, W. N. Tetrahedron Lett. **1977**, 635.

(6) Urabe, Y.; Kuwajima, I. Tetrahedron Lett. 1986, 1355.

(7) Ladlow, M.; Pattenden, G. Tetrahedron Lett. 1984, 4317.

(8) Parham, W. E.; Reed, L. J. Org. Synth. 1955, 3, 395. Cuvigny, T.; Normant, H. Bull. Soc. Chim. Fr. 1961, 2423. Dornow, A.; Lüpfert, S. Ann. 1957, 606, 56.


[†]Tokyo Institute of Technology.

[‡]Deceased February 27, 1985.

See, for recent reviews: Ueno, Y. Yuki Gosei Kagaku Kyokaishi
 1984, 1121. Hart, D. J. Science (Washington, D.C.) 1984, 223, 1121.
 Beckwith, A. L. J. Tetrahedron 1981, 37, 3073.
 (2) Surzur, J.-M. Reaction Intermediate; Abramobitch, R. A., Ed.;

⁽²⁾ Surzur, J.-M. Reaction Intermediate; Abramobitch, R. A., Ed.; Plenum: New York, 1979; Vol. 2, p 204.

⁽³⁾ See, for recent works and references cited therein: Abeywickrema,
A. N.; Beckwith, A. L. J. Tetrahedron Lett. 1986, 109. Stork, G.; Sher,
P. M. J. Am. Chem. Soc. 1986, 108, 303. Bachi, M. D.; Frolow, F.;
Hoornaert, C. J. Org. Chem. 1983, 48, 1841. Okabe, M.; Abe, M.; Tada,
M. J. Org. Chem. 1982, 47, 1775. Nagashima, H.; Wakamatsu, H.; Itoh,
K.; Tomo, Y.; Tsuji, J. Tetrahedron Lett. 1983, 2395. Ono, N.; Miyake,
H.; Kaji, A. Chem. Lett. 1985, 635.

tifunctional substituent in moderate yields (Table I). The decreased yield of 4c was caused by the difficulty in removing an organotin byproduct (Bu₃SnCl) from the reaction products.

The efficient cyclization of 3 may be attributed to the effects, coupled with radical stabilizing and steric one, of the electron-withdrawing groups.⁹ The successful results are also correlated with the feature of radical process performed under neutral conditions, i.e., the functional groups listed in the Table I are inert toward the radical species involved. Thus, synthesis of the tetrahydrofurans with a multifunctional substituent was achieved by utilizing the radical process designed to force and exo-cyclic mode of cyclization, in which active methylene compounds were shown to be a useful starting material. Further, the cyclization via radical intermediates bearing a vinylic oxygen in the chain enables the selective introduction of a substituent into C-2 position of tetrahydrofuran ring different from that containing an allylic oxygen, which afford the C-3-substituted tetrahydrofurans as a result of cyclization.3,4

In addition, the method mentioned above was also applied to the preparation of the cyclic compounds bearing a cyclohexanone moiety, but it was unsuccessful (Scheme II). When the vinyl ether 5, obtained from 1,3-cyclohexanedione with orthoformate $1,^{10}$ was treated with Bu₃SnH, the reduction product 6 was predominantly obtained contrary to our expectation to get spirocyclic 7 and/or bicyclic 8 compounds.¹¹

Experimental Section

IR spectra were measured on a JASCO A-3 grating infrared spectrophotometer and ¹H NMR spectra on a JEOL-FX90Q spectrometer with $CDCl_3$ solution and with Me₄Si as internal standard. The silica gel used for column chromatography was Wakogel C-200 (100–200 mesh). Benzene was distilled over so-dium metal before use, and other reagents were used as supplied from commercial sources. All the reactions employing tri-*n*-butyltin hydride were carried out under nitrogen.

Tris(3-chloropropyl) Orthoformate (1). A mixture of ethyl orthoformate (5.35 g, 36 mmol) and 1-chloropropan-3-ol (11.3 g, 120 mm01) was heated to 120 °C under atmospheric pressure for 4–5 h by distilling ethyl alcohol formed. Then the bath temperature was raised to 170 °C, and distillation was continued for 2 h. After that, fractional distillation of the residual oil under reduced pressure gave the ortho ester 1 (7.57 g, 71%) [145 °C (2 mmHg)]: IR (neat) 2970, 2900, 1110 cm⁻¹; ¹H NMR δ 2.02 (m, 6 H), 3.65 (m, 12 H), 5.80 (s, 1 H). Anal. Calcd for C₁₀H₁₉Cl₃O₃: C, 40.91; H, 6.52; Cl, 36.22. Found: C, 40.65; H, 6.49; Cl, 36.47.

Synthesis of Vinyl Ethers 3. General Procedure. A solution of active methylene compound 2 (6.5 mmol) and 1 (8.5 mmol) in acetic anhydride (2 mL) was stirred at 140–150 °C for

the time shown in the Table I. The resulting solution was concentrated by distillation under reduced pressure from 100 to 5 mmHg at 160–170 °C. The residual black viscous oil was subjected to silica gel column chromatography using benzene and purified, further, by Kugelrohr distillation to give 3a-d (Table I).

3a ($\mathbb{R}^1 = \mathbb{CN}$, $\mathbb{R}^2 = \mathbb{CO}_2\mathbb{E}t$): bp 170 °C (0.04 mmHg) (Kugelrohr); IR (neat) 2240 ($\nu_{\mathbb{C}=\mathbb{N}}$), 1720, 1620, 1300, 1275, 1110 cm⁻¹; ¹H NMR δ 1.30 (t, 3 H, J = 8.0 Hz), 2.25 (m, 2 H), 3.70 (t, 2 H, J = 6.5 Hz), 4.15–4.60 (m, 4 H), 8.02 (s, 1 H). Anal. Calcd for $\mathbb{C}_9H_{12}\mathbb{C}INO_3$: C, 49.67; H, 5.56; N, 6.43; Cl, 16.29. Found: C, 49.50; H, 5.30; N, 6.67; Cl, 16.51.

3b (R¹ = COMe, R² = CO₂Me): bp 160 °C (0.05 mmHg) (Kugelrohr); IR (neat) 1715, 1670, 1630, 1110 cm⁻¹; ¹H NMR δ 2.00–2.40 (m, 2 H), 2.34, 2.38 (ss, 3 H)8 3.50–3.80 (m, 5 H), 4.20–4.50 (m, 2 H), 7.62, 7.65 (ss, 1 H). Anal. Calcd for C₉H₁₃ClO₄: C, 48.99; H, 5.94; Cl, 16.07. Found: C, 48.98; H, 5.95; Cl, 16.63.

3c (R¹ = COMe, R² = COPh): bp 200 °C (0.05 mmHg) (Kugelrohr); IR (neat) 1740, 1680, 1630, 1290, 1165 cm⁻¹; ¹H NMR δ 1.80–2.04 (m, 2 H), 2.22 (s, 3 H), 3.30 (t, 2 H, J = 6.0 Hz), 4.15 (t, 2 H, J = 7.0 Hz), 7.50 (m, 3 H), 7.70 (s, 1 H), 7.80 (m, 2 H). Anal. Calcd for C₁₄H₁₆ClO₃: C, 62.81; H, 6.02; Cl, 13.24. Found: C, 63.30; H, 6.09; Cl, 13.85.

3d (R¹, R² = CO₂Ét): bp 180 °C (0.05 mmHg); IR (neat) 1740, 1630, 1290, 1190, 1160, 1110 cm⁻¹; ¹H NMR δ 1.25, 1.27 (tt, 6 H, J = 7.0 Hz), 1.90–2.30 (m, 2 H), 3.50–3.75 (m, 2 H), 4.00–4.40 (m, 6 H), 7.60 (s, 1 H). Anal. Calcd for C₁₁H₁₇ClO₅: C, 49.91; H, 6.47. Found: C, 49.63; H, 6.45.

Radical Cyclization of Vinyl Ethers 3. General Procedure. Tri-*n*-butyltin hydride (1.9 mmol) was added dropwise over 30 min to a solution of 3 (1.7 mmol) and azobisisobutyronitrile (0.1 mmol) in benzene (50 mL). After being stirred under reflux for the time shown in the Table I, the solution was concentrated via a rotary evaporator. The residue was subjected to column chromatography (SiO₂, CHCl₃) to give the tetrahydrofurans 4a-d (Table I).

4a ($\mathbf{R}^1 = \mathbf{CN}$, $\mathbf{R}^2 = \mathbf{CO}_2\mathbf{Et}$): IR (neat) 2250 ($\nu_{\mathbf{C}=\mathbf{N}}$), 2950, 1740, 1260, 1190, 1070 cm⁻¹; ¹H NMR δ 1.30 (t, 3 H, J = 8.0 Hz), 1.50–2.10 (m, 4 H), 3.60–4.05 (m, 3 H), 4.10–4.60 (m, 3 H). Anal. Calcd for $\mathbf{C}_9\mathbf{H}_{13}\mathbf{NO}_3$: C, 59.01; H, 7.15; N, 7.64. Found: C, 59.30; H, 7.12; N, 7.68.

4b ($\mathbb{R}^1 = \text{COMe}, \mathbb{R}^2 = \text{CO}_2\text{Me}$): IR (neat) 1730, 1280, 1075 cm⁻¹, ¹H NMR δ 1.80–2.30 (m, 4 H), 2.25 (s, 3 H), 3.30–3.85 (m, 6 H), 4.30 (t, 1 H, J = 6.0 Hz). Anal. Calcd for $C_9H_{14}O_4$: C, 58.05; H, 7.58. Found: C, 58.14; H, 7.61.

4c (R¹ = COMe, R² = COPh): IR (neat) 1720, 1680, 1250 cm⁻¹; ¹H NMR δ 1.90–2.25 (m, 4 H), 2.18 (s, 3 H), 3.60–3.85 (m, 3 H), 4.45 (q, 1 H, J = 7.0 Hz), 7.50 (m, 3 H), 7.90 (m, 2 H). Anal. Calcd for C₁₄H₁₆O₃: C, 72.33; H, 6.93. Found: C, 72.38; H, 6.67. 4d (R¹, R² = CO₂Et): IR (neat) 1740, 1150 cm⁻¹; ¹H NMR δ

4d (R¹, R² = CO₂Et): IR (neat) 1740, 1150 cm⁻¹; ¹H NMR δ 1.28 (t, 6 H, J = 8.0 Hz), 1.60–2.20 (m, 4 H), 3.45 (d, 1 H, J = 10 Hz), 3.60–4.00 (m, 2 H), 4.00–4.50 (m, 5 H). Anal. Calcd for C₁₁H₁₈O₅: C, 57.38; H, 7.88. Found: C, 57.02; H, 7.92.

1-(3-Chloropropoxy)cyclohexen-3-one (5). A solution of 1,3-cyclohexanedione (0.63 g, 5.62 mmol), 1 (2.50 g, 8.53 mmol), and *p*-toluenesulfonic acid (0.9 mmol) in benzene (3 mL) was stirred at room temperature for 2 days and then concentrated by distillation under reduced pressure [120 °C (20 mmHg)]. The residue was subjected to column chromatography (SiO₂, CHCl₃) and purified by Kugelrohr distillation to give 5 (0.44 g, 41%): bp 145 °C (1 mmHg) (Kugelrohr); IR (CHCl₃ solution) 1650, 1610, 1220, 1185 cm⁻¹; ¹H NMR δ 1.80–2.50 (m, 8 H), 3.70 (t, 2 H, J = 7.5 Hz), 4.00 (t, 2 H, J = 6.5 Hz), 5.40 (s, 1 H).

1-Propoxycyclohexen-3-one (6). The reaction was carried out in the same manner as described above for the preparation of **4**. **5** (0.35 g, 1.85 mmol) was converted into **6** (0.26 g, 95 %): IR (CHCl₃ solution) 2950, 1640, 1605, 1190 cm⁻¹; ¹H NMR δ 0.95 (t, 3 H, J = 8.0 Hz), 1.40–2.40 (m, 8 H), 3.80 (t, 2 H, J = 7.5 Hz), 5.30 (s, 1 H). Anal. Calcd for C₉H₁₄O₂: C, 70.10; H, 9.15. Found: C, 69.97; H, 9.11.

Registry No. 1, 38565-66-1; **2a**, 105-56-6; **2b**, 105-45-3; **2c**, 93-91-4; **2d**, 105-53-3; **3a**, 104808-09-5; **3b**, 104808-10-8; **3c**, 104808-11-9; **3d**, 104808-12-0; **4a**, 104808-13-1; **4b**, 104808-14-2; **4c**, 104808-15-3; **4d**, 70398-41-3; **5**, 104808-16-4; **6**, 104808-17-5; HC(OEt)₃, 122-51-0; HO(CH₂)₃Cl, 627-30-5; 1,3-cyclohexanedione, 504-02-9.

⁽⁹⁾ Giese, B. Angew. Chem., Int. Ed. Engl. 1985, 24, 553.

⁽¹⁰⁾ Stork, G.; Kraus, G. A. J. Am. Chem. Soc. 1976, 98, 2351.

⁽¹¹⁾ An alternative reaction route was presumed in ref 2.